

ISO/IEC JTC 1/SC 24

Computer graphics, image processing and environmental data representation Secretariat: BSI (United Kingdom)

Document type:	Meeting Report			
Title:	N 4032 WG9-2017-InfoModel-LAE-MAR			
Status:				
Date of document:	2017-10-25			
Expected action:	INFO			
No. of pages:	33			
Email of secretary:	charles.whitlock@bsigroup.com			
Committee URL:	http://isotc.iso.org/livelink/livelink/open/jtc1sc24			

Information Model for LAE in MAR

ISO/IEC JTC1 SC24 Plenary Meeting 7-11 August, 2017 Kwan-Hee Yoo Chungbuk National University

CGaC Computer Graphics And Contents lab

Live Actor and Entity in a MAR world

An LAE integrated in a 2D video virtual world after Chromakeying

LAEs integrated into a 3D virtual world after Chromakeying

10000

Live Actor and Entity in a MAR world

(c) An LAE interact with virtual object in a 3D virtual world after Chromakeying

(d) Virtual representation of a LAE in MAR world as a 3D full virtual object

1000

Live Actor and Entity in a MAR world

Characteristics of a LAE representation in MAR world

Tracking LAE_1

(non)Choromakeying

Tracking LAE_2

Fusion4D

Full 3D Model

Fusion4D Another Example

Fusion4D Another Example

Skeleton based LAE representation by Kinect

LAE Representation

Model

LAE Events

Virtual DDR dancing

Dodging a piece of wood

Crossing a balance beam

Initial state	LAE gestures	Left hand	Right hand	Callback functions
			-	Left (Rotation) Move the camera in positive direction of axis Y based on 3D model
		-		Right (Rotation) Move the camera in negative direction of axis Y based on 3D model
	J.	1		Up (Rotation) Move the camera in positive direction of axis X based on 3D model
	-	-	•	Down (Rotation) Move the camera in positive direction of axis X based on 3D model
				Zoom In (Scaling) Decrease distance between a camera position and the center of 3D model
	- Ales			Zoom Out (Scaling) Increase distance between a camera position and the center of 3D model

LAE Representation

Model

-Voice

Objective of this work

Modeling a LAE

Developing LAE-MAR Applications

File Level Description for a LAEMAR application

Camera Capturer & 2D chromakeying image for a LAE

```
//Capturer
<b>LAECapturer
id = "dcam0" type = "camera" fov="50" framerate= "60" >
</LAECapturer>
<b>KLAETracker
id = "t1, laecapturer = "dcam0" laeid = "id1" chromakeying = "true" >
</LAETracker>
//Scene Description for spatial mapping of LAE
<LAESMSceneDesc id = "smsd1" description = "" initialPosition</pre>
= "2 2 2" LAEObject= "objId" > </ LAESMSceneDesc >
<MARScene id= "sc1" MARScene= "demo.x3d" > </MARScene>
//Spatial Mapping
<LAESpatialMapper id = "sm1" tracker= "t1" sceneDescId = "smsd1" >
</LAESpatialMapper >
<LAERenderer id= "rd" spatialMapper= "sm1" marScene= "sc1" >
```

Information Model for LAE-MAR

- Define the following for
 - Live Actor and Entity
 - Capturer and Sensor
 - Tracker and Recognizer
 - Spatial Mapper and Event Mapper
 - Scene Description
- use X3D file or others for MAR Scene
- use HTM5 for Information Model Description of LAE-MAR

- Submit the NWIP when the document of Information Model of

MAR content is prepared for CD ballot

Thank you.

CGaC Computer Graphics And Contents lab