

ISO/IEC JTC 1/SC 24

Computer graphics, image processing and environmental data representation Secretariat: BSI (United Kingdom)

Document type: Meeting Report

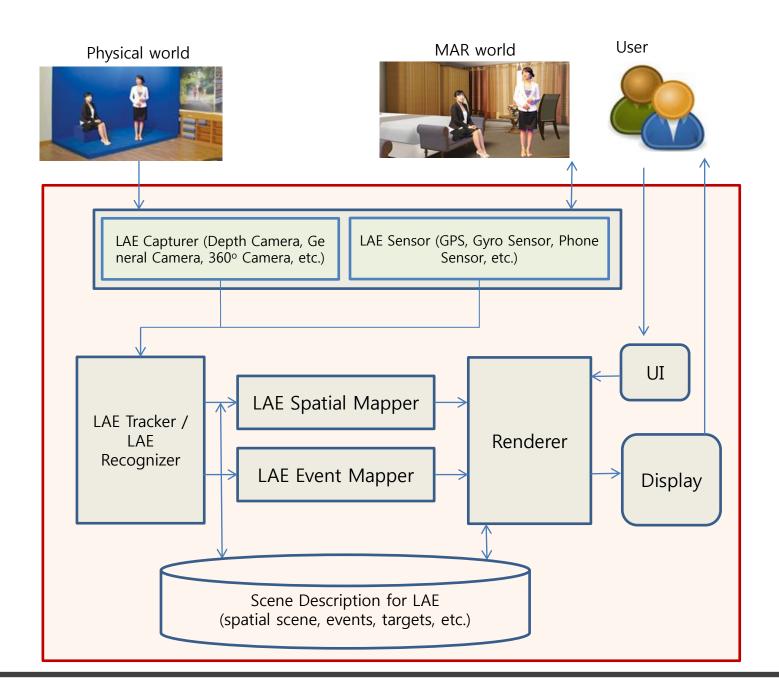
Title: N 4020 NW38 ll Information Model for LAE MAR 201708

Status:

Date of document: 2017-10-23

Expected action: INFO

No. of pages: 26


Email of secretary: <u>charles.whitlock@bsigroup.com</u>

Committee URL: http://isotc.iso.org/livelink/livelink/open/jtc1sc24

Information Model for LAE in MAR

ISO/IEC JTC1 SC24 Plenary Meeting
7-11 August, 2017
Kwan-Hee Yoo
Chungbuk National University

Live Actor and Entity in a MAR world

An LAE integrated in a 2D video virtual world after Chromakeying

LAEs integrated into a 3D virtual world after Chromakeying

Live Actor and Entity in a MAR world

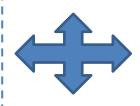
(c) An LAE interact with virtual object in a 3D virtual world after Chromakeying

(d) Virtual representation of a LAE in MAR world as a 3D full virtual object

Live Actor and Entity in a MAR world

A virtual LAE restricted to and communicating in a MAR world[Microsoft Holoportation]

[Mingsong Dou, etc, Fusion4D, 2016]


Characteristics of a LAE representation in MAR world

LAE

- 2D Chromakeying
- 3D full model
- Virtual Actor and Entity
- Virtual Actor and Entity (H-Anim)

Environment

- 2D Image
- VR Environment (360 VR, Full 3D virtual space)

Spatial Mapping Event Mapping

MAR scene description for controlling a LAE

Tracking LAE_1

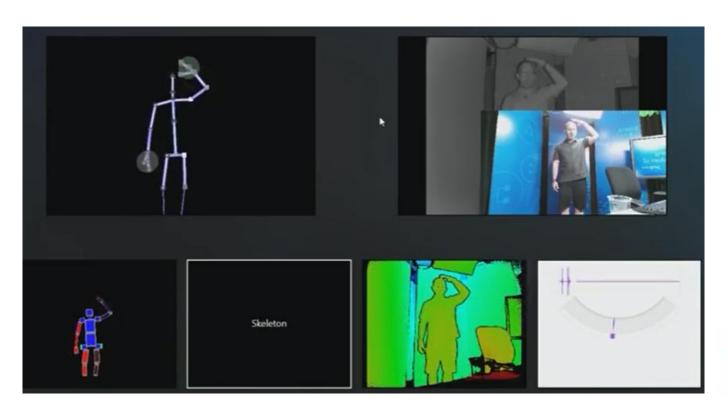
Tracking LAE_2

Fusion4D

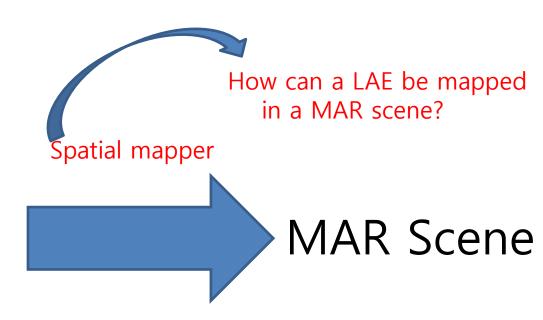
Full 3D Model

Fusion4D Another Example

Fusion4D Another Example

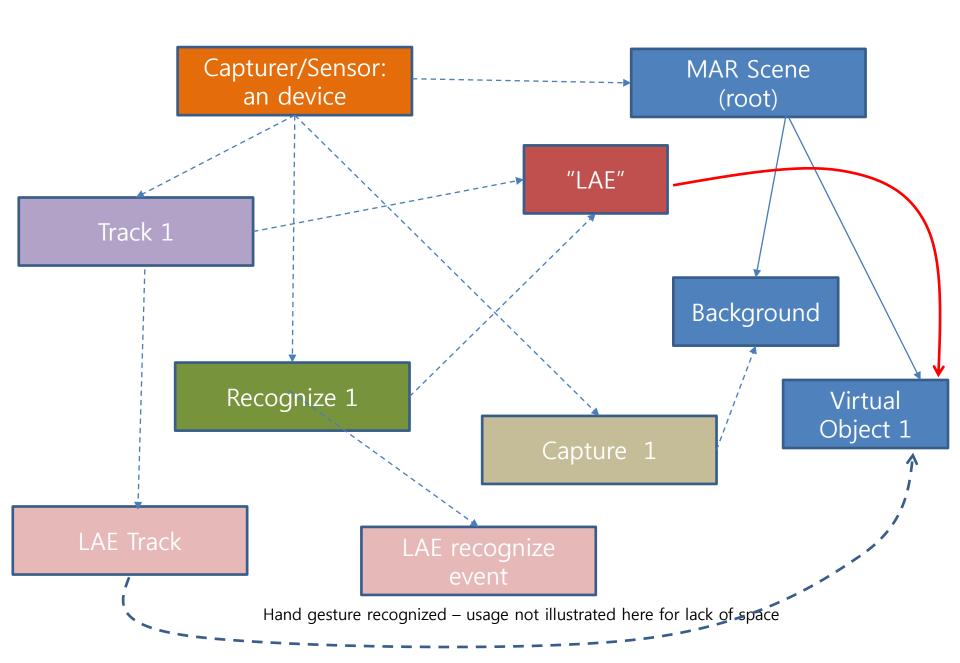


Skeleton based LAE representation by Kinect

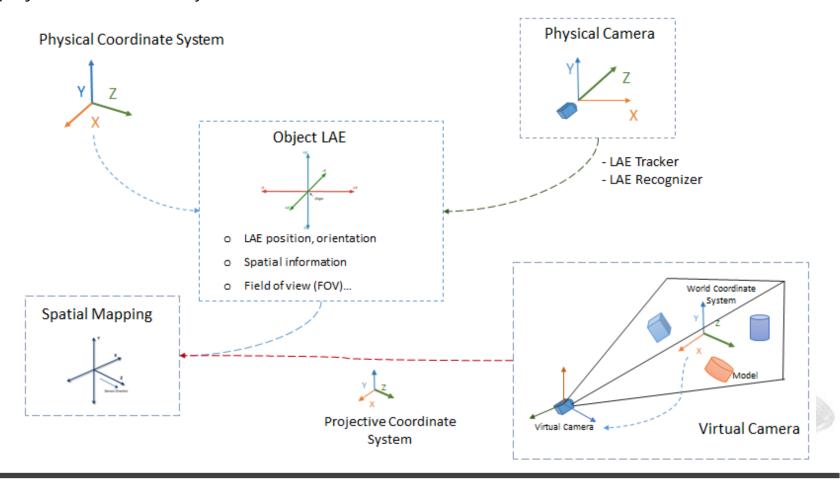

LAE Representation

Model

- -2D Image (Chromakeying)
- -Full 3D models
- -Skeleton Model (with Skin)


Property

- -Physical world Information
- -Position
- -Orientation
- -Scale
- -Behavior (Walking, Running, etc)


LAE Modeling

- ✓ 2D Image with/without Chromakeying
- ✓ 3D full model with real texture image
- ✓ Virtual Actor and Entity
- ✓ Virtual Actor and Entity (H-Anim)

Coordinate System

- The coordinate system of a LAE starts from a model coordinate system that gets transformed into a world coordinate system, then into a virtual camera coordinate system, and finally into a projection coordinate system.

LAE Events

Virtual DDR dancing

Dodging a piece of wood

Crossing a balance beam

Initial state	LAE gestures	Left hand	Right hand	Callback functions
		-	-	Left (Rotation) Move the camera in positive direction of axis Y based on 3D model
		-		Right (Rotation) Move the camera in negative direction of axis Y based on 3D model
		-		Up (Rotation) Move the camera in positive direction of axis X based on 3D model
) Alex	-	•	Down (Rotation) Move the camera in positive direction of axis X based on 3D model
				Zoom In (Scaling) Decrease distance between a camera position and the center of 3D model
	1 Bec		—	Zoom Out (Scaling) Increase distance between a camera position and the center of 3D model

LAE Representation

Model

- -2D Image (Chromakeying)
- -Full 3D models
- -Skeleton Model (with Skin)

How can a LAE be mapped in a MAR scene?

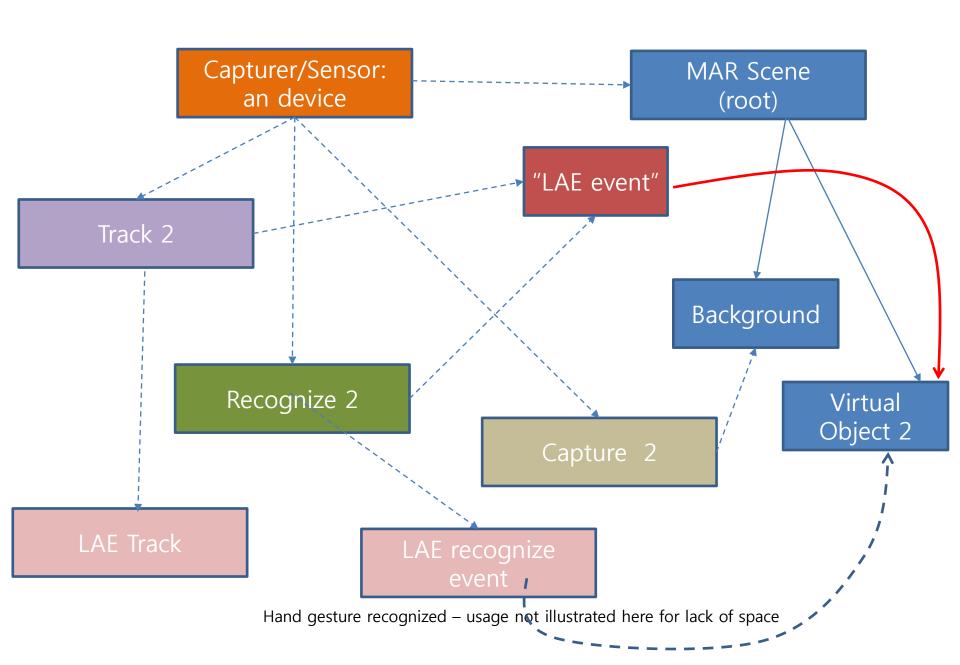
Spatial mapper

Property

- -Physical world Information
- -Position
- -Orientation
- -Scale
- -Behavior (Walking, Running, etc)

Event mapper

How can a LAE interact with a MAR scene?


MAR Scene

Events (him/herself + handheld devices)

- -Gesture
- -Voice

Interaction of LAE and MAR scene

- Interaction of LAE itself (LAE Capturer)
 - ✓ Gestures hands, fingers, head, body
 - ✓ Facial expressions
 - ✓ Speech and voice
- Interaction of LAE held devices (LAE Sensor)
 - ✓ AR marker
 - ✓ Global Positioning System (GPS)
 - ✓ Remote Wii motion data
 - ✓ Other sensing data by a smart device: three-axis accelerometer, magnetometer (digital compass)

Objective of this work

Modeling a LAE

Developing LAE-MAR Applications

File Level Description for a LAEMAR application

Camera Capturer & 2D chromakeying image for a LAE

```
//Capturer
<u>CLAECapturer</u>
id = "dcam0" type = "camera" fov="50" framerate= "60" >
</LAECapturer>
<u>KLAETracker</u>
id = "t1, laecapturer = "dcam0" laeid = "id1" chromakeying = "true" >
</LAETracker>
//Scene Description for spatial mapping of LAE
<LAESMSceneDesc id = "smsd1" description = "" initialPosition</pre>
= "2 2 2" LAEObject= "objld" > </ LAESMSceneDesc >
<MARScene id= "sc1" MARScene= "demo.x3d" > </MARScene>
//Spatial Mapping
<LAESpatialMapper id = "sm1" tracker= "t1" sceneDescId = "smsd1" >
</LAESpatialMapper >
<LAERenderer id= "rd" spatialMapper= "sm1" marScene= "sc1" >
```

Information Model for LAE-MAR

- Define the following for
 - Live Actor and Entity
 - Capturer and Sensor
 - Tracker and Recognizer
 - Spatial Mapper and Event Mapper
 - Scene Description
- use X3D file or others for MAR Scene
- use HTM5 for Information Model Description of LAE-MAR

NWIP

- Submit the NWIP when the document of Information Model of MAR content is prepared for CD ballot

Thank you.

CGaC Computer Graphics And Contents lab